

UNIVERSITY OF THE PHILIPPINES LOS BAÑOS

Doctor of Philosophy in Forestry: Forest Resources Management

HUNG TUAN NGUYEN

BIOMASS AND CARBON SEQUESTRATION PREDICTION MODELS FOR Acacia mangium Willd PLANTATIONS IN THAI NGUYEN PROVINCE, VIET NAM

TEODORO R. VILLANUEVA, Ph.D.

Adviser

Date:	
This dissertation can be made available to the general public	YES
This dissertation can be accessed only after consultation with the author and dissertation adviser	
This dissertation can be accessed only by those bound by confidentiality agreement	
HUNG TUAN NGUYEN	

TEODORO R. VILLANUEVA, Ph.D.

BIOMASS AND CARBON SEQUESTRATION PREDICTION MODELS FOR Acacia mangium Willd PLANTATIONS IN THAI NGUYEN PROVINCE, VIET NAM

HUNG TUAN NGUYEN

The dissertation attached here to, entitled "BIOMASS AND CARBON SEQUESTRATION PREDICTION MODELS FOR Acacia mangium Willd PLANTATIONS IN THAI NGUYEN PROVINCE, VIET NAM" prepared and submitted by NGUYEN TUAN HUNG in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (FORESTRY: FOREST RESOURCES MANAGEMENT) is hereby accepted.

WILFREDO M. CARANDANG	JUAN M. PULHIN
Member, Advisory Committee	Member, Advisory Committee
Date Signed	Date Signed
MYRNA G. CARANDANG	TEODORO R. VILLANUEVA
Member, Advisory Committee	Chair, Advisory Committee
Date Signed	Date Signed

Accepted in partial fulfillment of the requirements for the degree of **DOCTOR OF**PHILOSOPHY (FORESTRY: FOREST RESOURCES MANAGEMENT).

MARGARET M. CALDERON
Director, Institute of Renewable Natural Resources
Date Signed

JOSE V. CAMACHO, JR

Dean, Graduate School University of the Philippines Los Baños

Date Signed

BIOGRAPHICAL SKETCH

The author was born on March 29, 1980 in Thai Nguyen City, Thai Nguyen Province, Vietnam. He is the eldest of two children of Mr Nguyen Van Hoi and Mrs Nguyen Thi Nhan. He finished his elementary, secondary, and high school education from Thai Son, Quang Trung, and Luong Ngoc Quyen School, respectively in Thai Nguyen City, Thai Nguyen Province, Vietnam in 1998.

He completed his bachelor's degree in Forestry from the Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen City, Thai Nguyen Province in 2002. Through the Australia Development Scholarship (ADS), he was able to earn his Master's degree in Forest Science and Management at the Southern Cross University, New South Wales, Australia in 2012.

In 2015, the Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) granted him a scholarship to pursue his PhD degree in Forestry: Forest Resources Management at the College of Forestry and Natural Resources, University of the Philippines Los Banos (UPLB).

He is currently employed as a teacher and researcher at the Faculty of Forestry,
Thai Nguyen University of Agriculture and Forestry, Thai Nguyen Province, Vietnam.

He is happily married to Ms. Pham Thi Hoai, with whom he is blessed with a son, Nguyen Lam Khoa and a lovely daughter, Nguyen Tue An.

HUNG TUAN NGUYEN

ACKNOWLEDGMENT

First and foremost, my sincerest thanks to my institution, Thai Nguyen University of Agriculture and Forestry for allowing me to go on study leave and to the Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) for awarding me a scholarship to pursue a PhD degree in UPLB.

Special thanks are extended to Dr. Teodoro R. Villanueva, Chair, advisory committee, for his intellectual and professional guidance, critical comments, encouragement and remarkable interest in supervising this study. My grateful acknowledgment also to the members of my advisory committee: Dr Myrna G. Carandang, Dr Wilfredo M. Carangdang, and Dr Juan M. Pulhin for their valuable comments, sincere concern, and understanding.

I am also thankful to the rest of the faculty and administrative staff of the Institute of Renewable and Natural Resources and the Faculty of UPLB Graduate School for their great support.

A note of gratitude also goes to all the members of the Faculty of Forestry, Thai Nguyen University of Agriculture and Forestry for the support and assistance extended to me for my study. My deepest gratitude goes to my loving family for all their sacrifices and encouragements. I am forever grateful to my loving wife, Mrs. Pham Thi Hoai, my son, Mr. Nguyen Lam Khoa and and my daughter Ms Nguyen Tue An for their love and spiritual support.

Special thanks also go to all of my sincere friends in Vietnam, as well as in UPLB who have directly or indirectly helped me during my stay at UPLB and also during the conduct of dissertation research in my country.

TABLE OF CONTENTS

CHAPTER		PAGE
	Title Page	i
	Approval Page	ii
	Biographical Sketch	iii
	Acknowledgement	iv
	Table of Contents	v
	List of Tables	ix
	List of Figures	xi
	Abstract	xiv
I	INTRODUCTION	1
	Background of the Study	1
	Statement of the Problem	8
	Hypothesis of the Study	12
	Objective of the Study	13
	Importance of the Study	14
	Scope and Limitation of the Study	17
II	REVIEW OF LITERATURE	18
	Biomass and Carbon Sequestration of Forest Ecosystems	18
	Studies on Biomass and Carbon Sequestration in the World	23
	Studies on Biomass and Carbon Sequestration in Vietnam	27
	Studies on Biomass and Carbon Sequestration	31
	Studies on Biomass and Carbon Sequestration of Acacia Species in the World	31

CHAPTER		PAGE
	Studies on Biomass and Carbon Sequestration of Acacia species in Vietnam	33
	Biomass and Carbon Prediction Techniques	36
	Aboveground Biomass	37
	Below Ground Biomass (BGB)	39
	Biomass Growth Models in Forest Management	41
	Estimation of Total Aboveground Biomass and Carbon Storage based on IPCC Method	50
	Estimation of Total Aboveground Biomass and Carbon Storage based on the Jenkins et al. (2003) Method	50
	Estimation of Total Aboveground Biomass and Carbon Storage based on the Chojnacky and Jenkins (2010) Method	51
III	METHODOLOGY	55
	Study Area	55
	Data Gathering Techniques	58
	Analytical Framework	59
	Mapping of Study Site	62
	Sample Size and Sampling Method	63
	Tree Volume	65
	Basal Area of Stand	66
	Stand Density	67
	Mean of Diameter	68
	Mean Total Height	68
	Aboveground Biomass (AGB) Calculation from Volume	69
	Biomass and Carbon Estimation of Individual Trees	70
	Individual Trees Biomass Estimation	70

CHAPTER		PAGE
	Methods to Determine the Amount of Carbon Stored in the Plantation	75
	Data Analysis and Model Development	77
	Model Application and Validation	85
IV	RESULTS AND DISCUSSION	87
	Acacia Plantation Management in Thai Nguyen Province	87
	Description of the Study Area	91
	Descriptive Statistics for All Variables of the Study	92
	Stand Variables	92
	Sample Variables	98
	Biomass and Carbon Estimation of Sample Tree and Stand	104
	Green Biomass of Individual Tree and Stands	105
	Dry Biomass and Carbon of Individual Trees and Stands	116
	Percentage between Dry and Green Biomass for Sample Tree by Age	122
	Carbon and Carbon Dioxide Stock of Individual Trees and Stands	123
	Total Aboveground and Belowground Biomass Estimation	128
	Model Development, Selection and Evaluation for Biomass Estimation	131
	Tree Fresh Biomass Models by Separated Ages	134
	Bole Biomass Models by Separated Ages	144
	Biomass Models of Branch and Leaves Combination by Separated Ages	151
	Green Biomass Models for all Age Levels	159
	Dry Biomass Models by Separated Ages	161

CHAPTER		PAGE
	Dry Biomass Models for All Age Levels	169
	Carbon Prediction Models by Separated Ages	171
	Carbon Estimation Models for All Age Levels	178
	Carbon and Carbon Dioxide Stock for Present Land Use and Scenarios Plantation Management in Thai Nguyen Province	180
	Carbon and Carbon Dioxide Stock of Present Land Use of <i>Acacia mangium</i> Willd	180
	Scenario 1. Land Use Change	181
	Scenario 2: Trend in biomass and carbon of <i>Acacia mangium</i> Willd Plantation	182
\mathbf{V}	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	186
	Summary	186
	Conclusion	188
	Recommendation	191
	LITTERATURE CITED	194

LIST OF TABLES

TABLE		PAGE
1	Estimated belowground biomass and carbon models for evergreen forests in Central Highlands of Vietnam.	41
2	The estimated biomass models built for the forest types over the world.	52
3	The estimated above ground biomass models built for forest types in Vietnam.	53
4	Inventory data sheet for each sample plot.	65
5	Green biomass calculated from the sample plots.	72
6	Dry biomass calculated from the sample plots	74
7	Forest resources of Thai Nguyen Province.	89
8	Descriptive summary of stand variables of Acacia mangium Willd.	93
9	ANOVA test of diameter and tree height at different strata conditions.	86
10	Descriptive statistics for sample trees of Acacia mangium Willd by ages.	101
11	Average green biomass distribution in the tree (kg/tree).	106
12	Dry biomass of sample trees by age.	118
13	Proportion of dry weight over green weight by age.	122
14	Average carbon and carbon dioxide of sample trees and components.	124
15	Aboveground and belowground biomass estimation from existing equations	130
16	Biomass model parameters and their performance criteria for Whole-trees.	135
17	Selection of best models for whole-trees biomass estimation by age.	136
18	Actual and predicted biomass for whole-tree by age.	140
19	Bole biomass model parameters and their performance criteria for different age.	145
20	Selected models for bole biomass estimation by ages for <i>Acacia mangium</i> Willd	146